Comparing the Exteroceptive Feedback of Normal Stress, Skin Stretch, and Vibrotactile Stimulation for Restitution of Static Events
نویسندگان
چکیده
This paper investigates the effectiveness of three types of haptic feedback: normal stress, tangential force, and vibrotactile stimulation. Modern prosthetic limbs currently available on the market do not provide a wide range of sensory information to amputees, forcing amputees to mainly rely on visual attention when manipulating objects. We aim to develop a haptic system that can convey information to the central nervous system (CNS) through haptic feedback. To this end, we aim to find out which type of feedback performs best under static conditions, so that it can be used to restore a sense of grasping force to amputees. We tested the three main stimulation methods by inputting a series of five force magnitudes to each haptic device, so that the device applied the corresponding feedback to the participants’ finger pads. The participants then pressed on a force sensor, with the goal of applying the same level of force to a force sensor as they believed the haptic device had initially conveyed to them via their finger pads. While the subjects pressed on the force sensor, the haptic device applied a level of feedback to their forearms that corresponded to the pressure they were applying to the sensor. These tests provided fifteen numerical data per subject and a total of 180 trials for all twelve subjects. The end results indicate that even though all the stimulation methods provided a sufficient level of feedback, normal stress seems more effective than either tangential force or vibrotactile stimulation, at conveying the sense of pressure to the finger pad.
منابع مشابه
Vibrotactile Detection, Identification and Directional Perception of signal-Processed Sounds from Environmental Events: A Pilot Field Evaluation in Five Cases
Objectives: Conducting field tests of a vibrotactile aid for deaf/deafblind persons for detection, identification and directional perception of environmental sounds. Methods: Five deaf (3F/2M, 22–36 years) individuals tested the aid separately in a home environment (kitchen) and in a traffic environment. Their eyes were blindfolded and they wore a headband and holding a vibrator for sound id...
متن کاملVibrotactile Identification of Signal-Processed Sounds from Environmental Events Presented by a Portable Vibrator: A Laboratory Study
Objectives: To evaluate different signal-processing algorithms for tactile identification of environmental sounds in a monitoring aid for the deafblind. Two men and three women, sensorineurally deaf or profoundly hearing impaired with experience of vibratory experiments, age 22-36 years. Methods: A closed set of 45 representative environmental sounds were processed using two transposing (TRH...
متن کاملTactile Display Device Using Distributed Lateral Skin Stretch
In the past, tactile displays were of one of two kinds: they were either shape displays, or relied on distributed vibrotactile stimulation. A tactile display device is described in this paper which is distinguished by the fact that it relies exclusively on lateral skin stretch stimulation. It is constructed from an array of 64 closely packed piezoelectric actuators connected to a membrane. The ...
متن کاملDesign and evaluation of a sensory feedback system that provides grasping pressure in a myoelectric hand.
Providing accurate sensory information to the individual with a myoelectric limb is of great importance for improving device use in a wide variety of tasks. A number of feedback systems presently being investigated rely on either vibrotactile or electrotactile skin stimulation, which does not provide sensory patterns similar to those in a natural grasping hand. A prototype system was developed ...
متن کاملPassive Mechanical Skin Stretch for Multiple Degree-of-Freedom Proprioception in a Hand Prosthesis
In this paper, we present a passive linear skin stretch device that can provide proprioceptive feedback for multiple degrees of freedom (DOF) in a prosthetic hand. In a 1-DOF virtual targeting task, subjects performed as well with our device as with a vibrotactile array, and significantly better (p < 0.05) than having no feedback at all. In a 3-DOF grip recognition task, subjects were able to c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Front. Robotics and AI
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017